Teraflop-scale Incremental Machine Learning

نویسنده

  • Eray Özkural
چکیده

We propose a long-term memory design for artificial general intelligence based on Solomonoff’s incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is ef-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research on Incremental Learning Method Based on Support Vector Machine Method

An incremental learning algorithm based on support vector machine was proposed to process large-scale data or data generated in batches. Initial goal concept learnt by standard support vector machine algorithm was updated by an updating model. Compared with the existing incremental learning algorithms, this algorithm can achieve the incremental inverse process and the training time is in invers...

متن کامل

A New Incremental Support Vector Machine Algorithm

Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vecto...

متن کامل

Incremental support vector machine algorithm based on multi-kernel learning

A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to impro...

متن کامل

Incremental Sparsification for Real-time Online Model Learning

Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper,...

متن کامل

Ontology learning from Italian legal texts

The paper reports on the methodology and preliminary results of a case study in automatically extracting ontological knowledge from Italian legislative texts. We use a fully–implemented ontology learning system (T2K) that includes a battery of tools for Natural Language Processing (NLP), statistical text analysis and machine language learning. Tools are dynamically integrated to provide an incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1103.1003  شماره 

صفحات  -

تاریخ انتشار 2011