Teraflop-scale Incremental Machine Learning
نویسنده
چکیده
We propose a long-term memory design for artificial general intelligence based on Solomonoff’s incremental machine learning methods. We use R5RS Scheme and its standard library with a few omissions as the reference machine. We introduce a Levin Search variant based on stochastic Context Free Grammar together with four synergistic update algorithms that use the same grammar as a guiding probability distribution of programs. The update algorithms include adjusting production probabilities, re-using previous solutions, learning programming idioms and discovery of frequent subprograms. Experiments with two training sequences demonstrate that our approach to incremental learning is ef-
منابع مشابه
Research on Incremental Learning Method Based on Support Vector Machine Method
An incremental learning algorithm based on support vector machine was proposed to process large-scale data or data generated in batches. Initial goal concept learnt by standard support vector machine algorithm was updated by an updating model. Compared with the existing incremental learning algorithms, this algorithm can achieve the incremental inverse process and the training time is in invers...
متن کاملA New Incremental Support Vector Machine Algorithm
Support vector machine is a popular method in machine learning. Incremental support vector machine algorithm is ideal selection in the face of large learning data set. In this paper a new incremental support vector machine learning algorithm is proposed to improve efficiency of large scale data processing. The model of this incremental learning algorithm is similar to the standard support vecto...
متن کاملIncremental support vector machine algorithm based on multi-kernel learning
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to impro...
متن کاملIncremental Sparsification for Real-time Online Model Learning
Online model learning in real-time is required by many applications such as in robot tracking control. It poses a difficult problem, as fast and incremental online regression with large data sets is the essential component which cannot be achieved by straightforward usage of off-the-shelf machine learning methods (such as Gaussian process regression or support vector regression). In this paper,...
متن کاملOntology learning from Italian legal texts
The paper reports on the methodology and preliminary results of a case study in automatically extracting ontological knowledge from Italian legislative texts. We use a fully–implemented ontology learning system (T2K) that includes a battery of tools for Natural Language Processing (NLP), statistical text analysis and machine language learning. Tools are dynamically integrated to provide an incr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1103.1003 شماره
صفحات -
تاریخ انتشار 2011